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1. Introduction and Preliminaries

Many researchers have proved results by associating a graph with a lattice. For
example Bollobás [1], and Rival [9] studied the covering graph of a lattice. Filipov [3]
studied the comparability graph, Nimbhorkar et al. [6] introduced the zero divisor
graph of a lattice and many other researchers have associated different types of
graphs with lattices. In this paper, we consider the covering graph of a lattice.
Throughout in this paper, all lattices, posets are finite and all graphs are finite and
simple (a graph is called simple, if its edge set contains neither a loop nor multiple
edges i.e. edges connecting the same pair of vertices).
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Let G be a graph and V (G) and E(G) denote its vertex set and the edge set,
respectively. The chromatic number of the graph G, denoted by χ(G), is the mini-
mum number of colors needed to color the vertices so that adjacent vertices receive
different colors. An independent set in a graph is a set of pairwise nonadjacent ver-
tices. So for any graph G the chromatic number χ(G) is the minimum number of
independent sets needed to partition V (G).

Any finite poset P can be visualized as a graph. Given a poset P , the covering
graph of P, is the graph G(P ), whose vertex set is P and 〈x, y〉 is an edge if either
x covers y (denoted by y ≺ x ) or y covers x. Let us denote the vertex set and the
edge set of G(P ) by V (P ) and E(P ), respectively.

A poset P is said to be k-chromatic if χ(P ) = χ(G(P )) = k and k-colorable if
χ(P ) ≤ k. It is known that for every positive integer k there is a poset P which is
k-chromatic.

In a conference on lattice theory held at Szeged in 1974, Burmeister and Rival
posed the following conjecture.

Conjecture. The graph of a lattice is always 3-colorable.

Bollobás [1] rejected this conjecture by proving the following theorem.

Theorem 1.1. Given a natural number k there is a lattice L whose covering graph
G(L) is not k-colorable.

We recall the concept of a dismantlable lattice which is introduced by Rival [9].

Definition 1.2. A finite lattice L with n elements is called a dismantlable lattice
if there exists a chain L1 ⊂ L2 ⊂ · · · ⊂ Ln(= L) of sublattices Li, (i = 1, 2, . . . , n)
of L such that |Li| = i for each i.

Clearly, a sublattice of a dismantlable lattice is also dismantlable. All the lat-
tices, shown in Fig. 1 are dismantlable. Kelly and Rival [5] proved a characterization
theorem and Thakare et al. [10] proved a structure theorem for this class of lattices.

Pawar and Bhamre [7] have recently established a characterization theorem for
2-chromatic dismantlable lattices and gave chromatic classification of the class of
dismantlable lattices. The following results are from [7].

Theorem 1.3. (i) A finite semi-modular lattice is 2-chromatic.

(ii) A dismantlable lattice is 3-colorable.
(iii) A dismantlable lattice is 2-chromatic if and only if lengths of all maximal

chains in it are of the same parity (i.e. all maximal chains are of even length
or all of them are of odd length).

From these results, we conclude that all posets having less than five elements
are 2-colorable and the poset N5 is 3-chromatic. Thus, every proper subposet of
N5 is 2-colorable. Consider the lattice O6 in the Fig. 1, we observe that N5 is a
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Fig. 1. Some dismantlable lattices.

sublattice of O6, χ(O6) = 2 and χ(N5) = 3. This indicates that, ‘a lattice L may
have a sublattice L′ such that χ(L′) > χ(L)’.

This observation motivates us to introduce the concepts of a purely chromatic,
a critically chromatic and a hyper chromatic poset as well as a lattice as follows.

Definition 1.4. A poset P (lattice L) is said to be a purely chromatic poset (lattice)
if for every subposet Q of P (sublattice L′ of L), χ(Q) ≤ χ(P ) (χ(L′) ≤ χ(L)).
A poset P is called a critically chromatic poset if for every proper subposet Q of
P, χ(Q) < χ(P ) and a hyper chromatic poset if there exists a subposet Q of P, such
that χ(Q) > χ(P ).

Similarly, we can define a critically chromatic lattice and a hyper chromatic
lattice.

The work in [1, 10] and [7] motivated us to define and study purely chromatic,
hyper chromatic and critically chromatic posets.

The operations such as the linear sum, the vertical sum, the horizontal sum and
adjunct, etc. on lattices (posets) are studied by many researchers.

In this paper, we obtain relationships between the chromatic numbers of two
lattices (posets) and their linear sum, vertical sum and adjunct. Some character-
izations for purely 2-chromatic lattices and dismantlable hyper chromatic lattices
are also proved.

The undefined terms and notations from lattice theory are from Davey and
Priestley [2] or Grätzer [4] and from graph theory are from West [11].

2. Coloring of Posets

In this section, we show that a dismantlable lattice is a hyper chromatic lattice if
and only if it is 2-chromatic and nonmodular. Throughout in this paper, we denote
a chain with n elements by Cn.
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Obviously, every critically chromatic poset is purely chromatic but not con-
versely, e.g. C3 is purely 2-chromatic but not critically chromatic. In fact, C2 is the
only critically 2-chromatic poset. Note that, if Q ⊂ P and G(Q) is a subgraph of
G(P ), then χ(Q) ≤ χ(P ). Thus, P is hyper chromatic if and only if there exists
a sub-poset Q of a poset P such that G(Q) is not a subgraph of G(P ). As every
sublattice of a lattice L is a sub-poset of L, we have the following results.

Proposition 2.1. If a poset P forms a lattice and it is a purely chromatic poset,
then P is also a purely chromatic lattice.

Proposition 2.2. If a lattice L is a hyper chromatic lattice, then L is also a hyper
chromatic poset.

We prove the following characterization.

Theorem 2.3. A nontrivial lattice of finite length is a purely 2-chromatic lattice
if and only if it is modular.

Proof. It is well known that a lattice is monochromatic if and only if it is a trivial
lattice. By Theorem 1.3, every nontrivial modular lattice is 2-chromatic. Since every
sublattice of a modular lattice is modular, it follows that a nontrivial modular lattice
is a purely 2-chromatic lattice.

Conversely, let L be a purely 2-chromatic nontrivial lattice of finite length. Then
χ(L) = 2. If L′ is a sublattice of L, then χ(L′) ≤ 2. Since χ(N5) = 3, L cannot
have a sublattice isomorphic to N5. Hence, L is modular.

The following example shows that the converse of Proposition 2.1 and that of
Proposition 2.2 does not hold.

Example 2.4. Let us consider the lattices L1 and N5 as depicted in Fig. 1, we
observe that χ(L1) = 2 and χ(N5) = 3. We note that L1 is a modular lattice. Since
every sublattice of a modular lattice is modular, by Theorem 2.3 every sublattice
of L1 is 2-colorable. Thus, L1 is a purely chromatic lattice.

Although N5 is not a sublattice of L1, it is a sub-poset of L1. Thus, L1 is a
hyper chromatic poset i.e. it is not a purely chromatic poset.

Thus from Theorem 2.3 and Example 2.4, we have the following remark.

Remark 2.5. A modular lattice is a purely chromatic lattice but it may be a hyper
chromatic poset.

Corollary 2.6. A dismantlable lattice L is a purely chromatic lattice if and only
if χ(L) = 3 or L is 2-colorable and modular.

Proof. Since a sublattice of a dismantlable lattice is dismantlable, the result follows
from Theorem 1.3(ii) and 2.3.
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Now we characterize dismantlable hyper chromatic lattices as follows.

Theorem 2.7. A dismantlable lattice is a hyper chromatic lattice if and only if it
is 2-chromatic and nonmodular.

Proof. Let L be a 2-chromatic, nonmodular lattice. Then there is a sublattice L′

of L which is isomorphic to N5 and hence χ(L′) = 3. Thus, L is a hyper chromatic
lattice.

Conversely, let L be a dismantlable, hyper chromatic lattice. As a trivial lattice is
the only 1-chromatic lattice, χ(L) �= 1. Let if possible χ(L) = 3. By Theorem 1.3(ii),
for every sublattice L′ of L, χ(L′) ≤ 3, which contradicts the fact that L is hyper
chromatic. Hence, χ(L) = 2 and nonmodularity of L follows from Theorem 2.3.

Remark 2.8. Example 2.4 shows that a dismantlable, 2-chromatic and modular
lattice may be a hyper chromatic poset.

3. Operations on Lattices and Coloring

In this section, we recall some known operations on posets such as the linear sum
(also called an ordinal sum), the vertical sum, the horizontal sum etc. and study
them in the context of coloring of lattices.

The following definition is from Davey and Priestley [2, p. 17].

Definition 3.1. Let P and Q be disjoint posets. The linear sum or ordinal sum
of P and Q, denoted by P ⊕Q, is defined by taking the following order relation on
P ∪ Q : x ≤ y if and only if x, y ∈ P and x ≤ y in P, or x, y ∈ Q and x ≤ y in Q,

or x ∈ P and y ∈ Q.

The vertical sum of two bounded posets P and Q is obtained from the linear
sum P ⊕Q by identifying the greatest element of P with the least element of Q. The
horizontal sum of bounded posets P and Q is obtained from their disjoint union
P ∪ Q by identifying the greatest elements of the two posets and also identifying
the least elements. These two concepts are from Davey and Priestley [2, p. 84]. The
concept of a vertical sum of two posets can be defined more explicitly as follows.

Definition 3.2. Let P1 be a poset with the largest element and P2 be a poset
with the least element such that the greatest element of P1 and the least element
of P2 are the same, say α, and P1 ∩P2 = {α}, then the vertical sum of P1 with P2,
denoted by P1 ◦P2, is a poset (P1 ∪P2,≤), where x ≤ y if and only if x, y ∈ P1 and
x ≤ y in P1 or x, y ∈ P2 and x ≤ y in P2 or x in P1 and y in P2.

Using these two definitions, we have:

Proposition 3.3. Let L1 and L2 be two lattices.

(1) Let L′ be a sublattice of L1 ⊕ L2. If both L′ ∩ L1 and L′ ∩ L2 are nonempty,
then L′ = (L′ ∩ L1) ⊕ (L′ ∩ L2).
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(2) Let L′ be a sublattice of L1 ◦L2. If both L′∩L1 and L′∩L2 are nonempty, then
L′ = (L′ ∩ L1) ◦ (L′ ∩ L2) or L′ = (L′ ∩ L1) ⊕ (L′ ∩ L2).

(3) L1 ⊕ L2 is distributive(modular) if and only if both L1 and L2 are
distributive(modular).

(4) L1 ◦ L2 is distributive(modular) if and only if both L1 and L2 are
distributive(modular).

Thakare et al. [10] introduced the concept of an adjunct of lattices. We extend
it to posets as follows.

Definition 3.4. Let P and Q be two disjoint finite posets and (a, b) be a pair of
distinct elements in P such that a < b and a is not covered by b. We define the
partial order ≤ on P ∪ Q with respect to the pair (a, b) as follows: x ≤ y in P ∪ Q

if and only if x, y ∈ P and x ≤ y in P or x, y ∈ Q and x ≤ y in Q or x ∈ P, x ≤ a

in P and y ∈ Q or x ∈ Q, y ∈ P and b ≤ y in P . The procedure of obtaining a
poset (P ∪ Q,≤) in this way is called the adjunct operation of P with Q at (a, b)
and the new poset is denoted by P ]baQ.

The diagram of P ]baQ is obtained by placing the diagram of P and the diagram
of Q side by side in such a way that the maximal elements of Q are at lower position
than that of b and the minimal elements of Q are at higher position than that of
a and then we add the edges connecting every maximal element of Q with b and
every minimal element of Q with a. It is easy to note that, if L1 and L2 are two
lattices, then L1]baL2 is also a lattice and L1 and L2 are its sublattices. The lattice
L2 as depicted in Fig. 2, illustrates 23]1cC1.

In particular, if P and Q are bounded posets, then |E(P ⊕ Q)| = |E(P )| +
|E(Q)| + 1, |E(P ◦ Q)| = |E(P )| + |E(Q)| and |E(P ]baQ)| = |E(P )| + |E(Q)| + 2.

Due to this fact the vertical sum and the adjunct of two lattices are respectively
called 0-sum and 2-sum; see Pawar and Waphare [8]. Apparently, one may feel that

Fig. 2. Linear sum, vertical sum and adjunct of lattices.
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the horizontal sum of two lattices L1 and L2 is a special case of the adjunct of the
two lattices L1 and L2 at (0, 1), but that is not true. Because, |L1]10L2| = |L1|+|L2|,
whereas the number of elements in the horizontal sum of L1 and L2 is |L1|+|L2|−2.
Thus, the adjunct of two bounded posets is a more general concept than that of their
horizontal sum. After introducing the concept of an adjunct of two lattices, Thakare
et al. [10] established a structure theorem for dismantlable lattices as follows.

Theorem 3.5 (Structure theorem). A finite lattice is dismantlable if and only
if it is an adjunct of chains. i.e. a lattice L is dismantlable if and only if L =
C1]b1a1

C2]b2a2
· · ·]bk−1

ak−1Ck, where C1, C2, . . . , Ck are disjoint chains in L.

Note that a representation of a dismantlable lattice as an adjunct of chains
is not unique. However, the number of chains in any adjunct representation of a
dismantlable lattice remains the same. Regarding coloring of these operations, we
have the following results.

Theorem 3.6. Let P and Q be two bounded posets and m = Max{χ(P ), χ(Q)}.
(1) If P and Q are disjoint, then

χ(P ⊕ Q) =

{
2 if χ(P ) = χ(Q) = 1

m otherwise.

(2) If P ∩Q = {a}, where a is the greatest element of P and also the least element
of Q, then χ(P ◦ Q) = m.

Proof. Let χ(P ) = k1 and χ(Q) = k2 and m = max{k1, k2}. Consider partitions,
{V1, V2, . . . , Vk1} and {V ′

1 , V ′
2 , . . . , V ′

k2
} of independent subsets of P and Q, respec-

tively such that the greatest element 1P of P is in V1 and the least element 0Q of
Q is in V ′

1 . Also, [m] = {1, 2, . . . , m} be the set of m colors.

(1) Let P and Q be disjoint posets. If χ(P ) = χ(Q) = 1, then P ⊕Q is a chain C2.
Hence χ(P ⊕ Q) = 2. Otherwise, G(P ) and G(Q) are subgraphs of G(P ⊕ Q),
therefore χ(P ⊕ Q) ≥ m. Moreover, E(P ⊕ Q) = E(P ) ∪ E(Q) ∪ {〈1P , 0Q〉}.
Therefore, a coloring function c : P ⊕ Q → [m] defined as

c(x) =

{
i if x ∈ Vi i = 1, 2, . . . , k1,

j + 1(mod m) if x ∈ V ′
j j = 1, 2, . . . , k2

is a proper coloring of L. This leads to χ(P ⊕ Q) = m.

(2) If 1P = 0Q = a, then P ◦ Q is defined. Using the same techniques as used in
(1), we observe that, a coloring function c′ : P ◦ Q → [m] defined as

c′(x) = i if x ∈ Vi and/or x ∈ V ′
i i = 1, 2, . . . , m,

is a proper coloring of L. This leads to χ(P ◦ Q) = m.
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The following corollary follows from Proposition 3.3 and Theorem 3.6.

Corollary 3.7. The linear sum of two purely chromatic lattices is a purely chro-
matic lattice. Similarly, the vertical sum of two purely chromatic lattices is a purely
chromatic lattice.

The following examples show that, the converse of both the statements in Corol-
lary 3.7 do not hold.

Example 3.8. The lattices N5 ⊕ O6 and N5 ◦ O6 depicted in Fig. 2 are purely
chromatic but O6 is not purely chromatic.

Example 3.9. The lattice O6 depicted in Fig. 1 is a horizontal sum of two disjoint
copies of C4. Here, C4 is purely chromatic lattice but O6 is not.

This observation leads to the computation of the chromatic number of an
adjunct of two lattices as follows.

Let L be a lattice. We denote by l(L), the length of a longest chain in L.

Theorem 3.10. If L1 and L2 are two lattices, L = L1]baL2 and m =
Max{χ(L1), χ(L2)}, then

χ(L) =

{
m + 1 if m = 2 and l([a, b]) and l(L2) are not of the same parity

m otherwise.

Proof. Let L = L1]baL2, χ(L1) = k1 and χ(L2) = k2 and m = max{k1, k2}.
As G(L1) and G(L2) are subgraphs of G(L), clearly, χ(L) ≥ m. It follows from
the Definition 3.4 that k1 ≥ 2. Hence, m ≥ 2 and the lattice L2 has the least
element 0 and the greatest element 1. Also, the edge set of G(L) is partitioned
into three sets E(L1), E(L2) and {〈a, 0〉, 〈1, b〉}. To determine χ(L), consider the
partitions {V1, V2, . . . , Vk1} and {V ′

1 , V ′
2 , . . . , V ′

k2
} of independent subsets of L1 and

L2, respectively and a set of m colors is denoted by [m] = {1, 2, . . . , m} of m colors.

Case-I: Let m = 2. Suppose that l([a, b]) and l(L2) are of the same parity.
If l([a, b]) and l(L2) both are even, then every saturated chain connecting a and

b is of even length. Hence both a, b acquire the same color. Similarly, 0 and 1 also
acquire the same color. Hence, without loss of generality, assume that a, b ∈ V1 and
0, 1 ∈ V ′

1 . Then we observe that, c : L → [m] defined by

c(x) =

{
1 if x ∈ V1 or x ∈ V ′

2 ,

2 if x ∈ V2 or x ∈ V ′
1

is a proper coloring of L.

If l([a, b]) and l(L2) both are odd, then every saturated chain connecting a

and b is of odd length, hence both a, b acquire different colors. Similarly, 0 and
1 also acquire different colors. Hence, without loss of generality, assuming that
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a ∈ V1, b ∈ V2, 0 ∈ V ′
1 and 1 ∈ V ′

2 , it can be verified that, the same color function c

defined above is a proper coloring of L. Thus χ(L) = 2.

Case-II: Let m = 2. Suppose that l([a, b]) and l(L2) are not of the same parity.
If l[a, b] is even and l(L2) is odd, then there exist two saturated chains, C1 ⊂ L1

connecting a and b and C2 ⊂ L2 connecting 0 and 1 such that l(C1) is even and
l(C2) is odd. Moreover, C1]baC2 is a sublattice of L. As G(C1]baC2) is subgraph of
G(L) and it is an odd cycle and χ(C1]baC2) = 3. Therefore χ(L) ≥ 3, a, b acquire the
same color and 0 and 1 acquire different colors. Without loss of generality, assume
that a, b ∈ V1, 0 ∈ V ′

1 and 1 ∈ V ′
2 , then we observe that c′ : L → [3] defined as

c′(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ V1,

2 if x ∈ V2 or x ∈ V ′
1 ,

3 if x ∈ V ′
2

is a proper coloring of L. Thus χ(L) = 3.

Similarly, it can be shown that, if l([a, b]) is odd and l(L2) is even then χ(L) = 3.

Case-III: Let m ≥ 3. Depending on l([a, b]) and l(L2), without loss of generality,
assuming that a, b ∈ V1 or a ∈ V1 and b ∈ V2 as well as 0, 1 ∈ V ′

1 or 0 ∈ V ′
1 and

1 ∈ V ′
2 , we observe that, in each case a coloring function c′′ : L → [m] defined as

c′′(x) =

{
i if x ∈ Vi i = 1, 2, . . . , k1

j + 1 (mod m) if x ∈ V ′
j j = 1, 2, . . . , k2

is a proper coloring of L. This leads to χ(L) = m.

The above three cases complete the proof.

We have the following theorem for dismantlable lattices.

Theorem 3.11. Let L1 and L2 be two dismantlable lattices,

(1) If L1 ∩L2 = ∅, then L1 ⊕L2 is a purely chromatic lattice if and only if both L1

and L2 are modular or at least one of L1 and L2 is 3-chromatic.
(2) L1 ◦L2 is a purely chromatic lattice if and only if both L1 and L2 are modular

or at least one of L1 and L2 is 3-chromatic.
(3) If L1 ∩L2 = ∅, then L1 ⊕L2 is a hyper chromatic lattice if and only if both L1

and L2 are 2-chromatic and at least one of L1 and L2 is nonmodular.
(4) If L1 ∩ L2 = {a}, where a is the greatest element of L1 and the least element

of L2. Then L1 ◦ L2 is a hyper chromatic lattice if and only if both L1 and L2

are 2-chromatic and at least one of L1 and L2 is nonmodular.

Proof. As L1 and L2 are dismantlable lattices, by Theorem 3.5, we can write
L1 = C1

0 ]b1a1
C1

1 ]b2a2
· · ·]bk

ak
C1

k and L2 = C2
0 ]b

′
1

a′
1
C2

1 ]b
′
2

a′
2
· · ·]b

′
k′

a′
k′

C2
k′ . If L1 ∩ L2 = ∅, then
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L1 ⊕ L2 exists. Also C1
0 ⊕ C2

0 is a maximal chain in L1 ⊕ L2. Moreover, we can
express L1 ⊕ L2 as

L1 ⊕ L2 = (C1
0 ⊕ C2

0 )]b1a1
C1

1 ]b2a2
· · ·]bk

ak
C1

k ]b
′
1

a′
1
C2

1 ]b
′
2

a′
2
· · ·]b

′
k′

a′
k′

C2
k′ .

Therefore, by Theorem 3.5, L1]baL2 is also a dismantlable lattice.
Similarly, we can prove that L1 ◦ L2 (if exists) is also dismantlable.
Now, (1) and (2) follow from Theorem 1.3 and Corollary 2.6. Also, (3) and (4)

can be proved by using Theorems 1.3 and 2.7.

Remark 3.12. In Example 3.9, the lattice O6 is not purely chromatic but it can
be expressed as an adjunct of two purely chromatic dismantlable lattices namely,
C4]10C2. The lattice L2 = 23]1cC1 as depicted in Fig. 2 is an adjunct of two purely
chromatic lattices but it is not a purely chromatic lattice. Moreover, it is an adjunct
of two distributive lattices but it is neither distributive nor modular.
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